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A variational principle for a fluid with a free surface 
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The full set of equations of motion for the classical water wave problem in 
Eulerian co-ordinates is obtained from a Lagrangian function which equals the 
pressure. This Lagrangian is compared with the more usual expression formed 
from kinetic minus potential energy. 

An expression for the pressure has been used (Clebsch 1859; Hargreaves 1908; 
Bateman 1944) as the Lagrangian when the equations of motion in an inviscid, 
incompressible fluid are derived from a variational principle, but it seems not to 
have been explicitly indicated that a simple extension of this variational principle 
also provides the boundary conditions appropriate to a free surface. This exten- 
sion is important in the application to water wave problems, where the non-linear 
boundary conditions for the free surface are the primary concern. The formulation 
below is also related to that given by Friedrichs (1933) and Garabedian & 
Spencer (1952), who used a variational principle to obtain the pressure condition 
at  the free surface in steady flows. The present interest in variational principles 
for water waves and related problems arose from their use by Whitham (1965, 
1966) in the theory of non-linear dispersive waves. 

First, for the irrotational case, let $(z, y, t )  be the velocity potential of a 5uid 
lying between y = 0 and y = h(x, t ) ,  with gravity acting in the negative y-direction. 
Then the variational principle is 

where #(x, y, t )  and h(x, t )  are allowed to vary subject to the restrictions 64 = 0, 
6h = 0 a t  x1,x2, t, and t,. The only change from earlier formulations using an 
expression for the pressure is that h(z, t )  variations are allowed here. 

According to the usual procedure in the calculus of variations, (1) becomes 

(2) 
Certain natural boundary conditions arise at  y = h and y = 0 if the integrated 
terms are carefully retained when (2) is integrated by parts. Thus 

8J = rsxz{ [*$: + *$: + $1 f gYly=h 8h + [( - hz $z + $y - h.l) &$ly=h - [#g 6$1~=0 
tl 2 1  

(3) 
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First, choose Sh = 0, [&$I,=, = [S$],=h = 0; since 84 is arbitrary otherwise, we 
deduce we have $zx+$,g = 0. Then, since ah, [8$],=h, [Sq5],=0 may be given 
arbitrary independent values, 

&):+&$$+$,+gy = 0 for y = h, (4) 

-hxq5x+$g-ht = 0 for y = h, ( 5 )  

-$zx-$g ,  = 0 for 0 < y < h, (6) 

-4, = 0 for y = 0. (7) 

These are the equations for the classical water wave problem. 
No satisfactory solution seems known for the general problem of finding 

suitable Lagrangian functions. For the water wave problem, in particular, the 
pressure function used in (1) is more productive than the traditional form of the 
Lagrangian, L", equal to kinetic minus potential energy. It is clear that 

must give the correct equation within the fluid, for the integrals in (8) and (1) 
differ by the expression 

which integrates, leaving only boundary terms. However, (9) contributes 
boundary terms at  y = h, so that (8) ,  as it stands, does not give the correct 
surface conditions. 

To see the difference in the boundary conditions, it  is necessary instead to 
relate L* to the negative of L. From (1) and (8 ) ,  the integral of L + L* is 

which, after integration by parts, becomes 

The key to the difference then appears to be conservation of mass. If conservation 
of mass is introduced by varying $ and h only among those functions that satisfy 
(5)-(7), the difference expression (11) vanishes except for the last two terms, and 
the last two terms are of no consequence since they contribute only at the x and 
t boundaries. In  this way L* is made equivalent to L and yields (4), but only a t  
the expense of assuming the other three equations of motion (5)-(7) at  the outset. 

Only the irrotational case has been treated above. For the rotational case, 
Clebsch (1859; or see Serrin 1959) expressed the velocity as u = Vq5 + aV,h'. Then 
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the variational principle, in a form similar to that given by Bateman (1929; 1944, 
p. 164), is 

S// / /p(q!+ + apt + $ L l Z  + gy) dy dxdz at = 0. (12) 

Bateman further generalized the variational principle to barotropic flow, that is, 
to flows in which the pressure is a function of the density alone. To extend his 
results to free surfaces it is again merely necessary to include the surface elevation 
among the quantities to be varied. 
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